Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JCI Insight ; 9(8)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38478516

RESUMEN

Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.


Asunto(s)
Quimiocina CXCL13 , Inmunoterapia , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Microambiente Tumoral , Microambiente Tumoral/inmunología , Humanos , Carcinoma Anaplásico de Tiroides/patología , Carcinoma Anaplásico de Tiroides/terapia , Carcinoma Anaplásico de Tiroides/inmunología , Animales , Ratones , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/inmunología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/terapia , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/inmunología , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/genética , Inmunoterapia/métodos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Análisis de la Célula Individual , Pronóstico , Linfocitos T/inmunología , Femenino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino
2.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38539803

RESUMEN

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 µM Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 µM B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 µM B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 µM B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

3.
J Hazard Mater ; 467: 133738, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38350317

RESUMEN

Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.


Asunto(s)
Citrus sinensis , Boro/toxicidad , Cobre/toxicidad , Plantones , Pared Celular , Hojas de la Planta , Pectinas/farmacología
4.
Exp Ther Med ; 27(1): 43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38125361

RESUMEN

Kodamaea ohmeri (K. ohmeri) is an ascosporogenic species of yeast that belongs to the genus Ascosporogenous and the family of Saccharomycetaceae. It has recently been found to cause various types of infections, particularly in critically ill immunocompromised patients. The present study describes a case of hospital-acquired pneumonia caused by K. ohmeri during veno-arterial extracorporeal membrane oxygenation. The fungal culture turned negative after the administration of caspofungin and amphotericin B. Extracorporeal membrane oxygenation (ECMO) is an adjunctive medical technique that provides temporary cardiopulmonary support for patients. Previous observations have suggested that the immune function of patients will typically decline during the use of ECMO, rendering infection to be one of the main complications of ECMO. K. ohmeri is a rare pathogenic fungus, particularly in immunocompromised individuals with vascular catheters, while amphotericin B is the most common antifungal therapy administered to treat K. ohmeri infections. It is important to raise awareness of rare fungal infections and actively treat them.

5.
Plant Physiol Biochem ; 206: 108318, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159548

RESUMEN

We used manganese (Mn)-tolerant 'Xuegan' (Citrus sinensis) seedlings as materials and examined the characterization of Mn uptake and Mn-activated-release of root exudates under hydroponic conditions. We observed that root and shoot Mn bioaccumulation factor (BCF) reduced with the increase of Mn supply, and that Mn transfer factor (Tf) reduced greatly as Mn supply increased from 0 to 500 µM, beyond which Tf slightly increased with increasing Mn supply, suggesting that Mn supply reduced the ability to absorb and accumulate Mn in roots and shoots, as well as root-to-shoot Mn translocation. Without Mn, roots alkalized the solution pH from 5.0 to above 6.2, while Mn supply reduced root-induced alkalization. As Mn supply increased from 0 to 2000 µM, the secretion of root total phenolics (TPs) increased, while the solution pH decreased. Mn supply did not alter the secretion of root total free amino acids, total soluble sugars, malate, and citrate. Mn-activated-release of TPs was inhibited by low temperature and anion channel inhibitors, but not by protein biosynthesis inhibitor. Using widely targeted metabolome, we detected 48 upregulated [35 upregulated phenolic compounds + 13 other secondary metabolites (SMs)] and three downregulated SMs, and 39 upregulated and eight downregulated primary metabolites (PMs). These findings suggested that reduced ability to absorb and accumulate Mn in roots and shoots and less root-to-shoot Mn translocation in Mn-toxic seedlings, rhizosphere alkalization, and Mn-activated-release of root exudates (especially phenolic compounds) contributed to the high Mn tolerance of C. sinensis seedlings.


Asunto(s)
Citrus sinensis , Citrus , Manganeso/farmacología , Manganeso/metabolismo , Citrus/metabolismo , Rizosfera , Raíces de Plantas/metabolismo , Plantones/metabolismo
6.
Cancer Med ; 12(18): 18837-18849, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37694549

RESUMEN

BACKGROUND: We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS: We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS: Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION: Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Factores de Riesgo , Islas de CpG
7.
J Hazard Mater ; 459: 132277, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37591167

RESUMEN

Boron (B) can alleviate Citrus copper (Cu)-toxicity. However, the underlying mechanism by which B mitigates Cu-toxicity is unclear. 'Xuegan' (Citrus sinensis) seedlings were exposed to 0.5 (control) or 350 (Cu-toxicity) µM Cu and 2.5 or 25 µM B for 24 weeks. Thereafter, we investigated the secretion of low molecular weight compounds [LMWCs; citrate, malate, total soluble sugars (TSS), total phenolics (TP), and total free amino acids (TFAA)] by excised roots and their concentrations in roots and leaves, as well as related enzyme gene expression and activities in roots and leaves. Cu-stress stimulated root release of malate and TFAA, which might contribute to citrus Cu-tolerance. However, B-mediated-mitigation of Cu-stress could not be explained in this way, since B addition failed to further stimulate malate and TFAA secretion. Indeed, B addition decreased Cu-stimulated-secretion of malate. Further analysis suggested that Cu-induced-exudation of malate and TFAA was not regulated by their levels in roots. By contrast, B addition increased malate, citrate, and TFAA concentrations in Cu-toxic roots. Cu-toxicity increased TP concentration in 25 µM B-treated leaves, but not in 2.5 µM B-treated leaves. Our findings suggested that the internal detoxification of Cu by LMWCs played a role in B-mediated-alleviation of Cu-toxicity.


Asunto(s)
Citrus sinensis , Boro/toxicidad , Cobre/toxicidad , Malatos , Plantones/genética , Aminoácidos , Citratos , Ácido Cítrico , Exudados y Transudados , Fenoles , Expresión Génica
8.
Plants (Basel) ; 12(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299123

RESUMEN

The effects of copper (Cu)-pH interactions on the levels of hormones and related metabolites (HRMs) in Citrus sinensis leaves and roots were investigated. Our findings indicated that increased pH mitigated Cu toxicity-induced alterations of HRMs, and Cu toxicity increased low-pH-induced alterations of HRMs. Increased pH-mediated decreases in ABA, jasmonates, gibberellins, and cytokinins, increases in (±)strigol and 1-aminocyclopropanecarboxylic acid, and efficient maintenance of salicylates and auxins homeostasis in 300 µM Cu-treated roots (RCu300); as well as efficient maintenance of hormone homeostasis in 300 µM Cu-treated leaves (LCu300) might contribute to improved leaf and root growth. The upregulation of auxins (IAA), cytokinins, gibberellins, ABA, and salicylates in pH 3.0 + 300 µM Cu-treated leaves (P3CL) vs. pH 3.0 + 0.5 µM Cu-treated leaves (P3L) and pH 3.0 + 300 µM Cu-treated roots (P3CR) vs. pH 3.0 + 0.5 µM Cu-treated roots (P3R) might be an adaptive response to Cu toxicity, so as to cope with the increased need for reactive oxygen species and Cu detoxification in LCu300 and RCu300. Increased accumulation of stress-related hormones (jasmonates and ABA) in P3CL vs. P3L and P3CR vs. P3R might reduce photosynthesis and accumulation of dry matter, and trigger leaf and root senescence, thereby inhibiting their growth.

9.
Front Neurol ; 14: 1136197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153675

RESUMEN

Purpose: To investigate the spontaneous brain activity alterations in survivors of cardiac arrest (CA) with good neurological outcome using resting-state functional magnetic resonance imaging (rs-fMRI) with amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) methods. Materials and methods: Thirteen CA survivors with favorable neurological outcomes and 13 healthy controls (HCs) were recruited and underwent rs-fMRI scans. The ALFF and ReHo methods were applied to assess the regional intensity and synchronization of spontaneous brain activity. Correlation analyses were performed to explore the relationships between the mean ALFF and ReHo values in significant clusters and clinical parameters. Results: The survivors of CA showed significantly decreased ALFF values in the left postcentral gyrus and precentral gyrus and increased ALFF values in the left hippocampus and parahippocampal gyrus than HCs. Significantly decreased ReHo values were observed in the left inferior occipital gyrus and middle occipital gyrus in the patients. Mean ALFF values in the left hippocampus and parahippocampal gyrus were positively correlated with the time to return of spontaneous circulation (r = 0.794, p = 0.006) in the patient group. Conclusion: Functional activity alterations in the brain areas corresponding to known cognitive and physical impairments were observed in CA survivors with preserved neurological function. Our results could advance the understanding of the neurological mechanisms underlying the residual deficits in those patients.

10.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430374

RESUMEN

The contribution of reactive oxygen species (ROS) and methylglyoxal (MG) formation and removal in high-pH-mediated alleviation of plant copper (Cu)-toxicity remains to be elucidated. Seedlings of sweet orange (Citrus sinensis) were treated with 0.5 (non-Cu-toxicity) or 300 (Cu-toxicity) µM CuCl2 × pH 4.8, 4.0, or 3.0 for 17 weeks. Thereafter, superoxide anion production rate; H2O2 production rate; the concentrations of MG, malondialdehyde (MDA), and antioxidant metabolites (reduced glutathione, ascorbate, phytochelatins, metallothioneins, total non-protein thiols); and the activities of enzymes (antioxidant enzymes, glyoxalases, and sulfur metabolism-related enzymes) in leaves and roots were determined. High pH mitigated oxidative damage in Cu-toxic leaves and roots, thereby conferring sweet orange Cu tolerance. The alleviation of oxidative damage involved enhanced ability to maintain the balance between ROS and MG formation and removal through the downregulation of ROS and MG formation and the coordinated actions of ROS and MG detoxification systems. Low pH (pH 3.0) impaired the balance between ROS and MG formation and removal, thereby causing oxidative damage in Cu-toxic leaves and roots but not in non-Cu-toxic ones. Cu toxicity and low pH had obvious synergistic impacts on ROS and MG generation and removal in leaves and roots. Additionally, 21 (4) parameters in leaves were positively (negatively) related to the corresponding root parameters, implying that there were some similarities and differences in the responses of ROS and MG metabolisms to Cu-pH interactions between leaves and roots.


Asunto(s)
Citrus sinensis , Especies Reactivas de Oxígeno/metabolismo , Citrus sinensis/metabolismo , Piruvaldehído/toxicidad , Piruvaldehído/metabolismo , Cobre/toxicidad , Cobre/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Concentración de Iones de Hidrógeno
11.
Chemosphere ; 308(Pt 2): 136348, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087738

RESUMEN

Copper (Cu) excess is often observed in old Citrus orchards. Little information is available on the characterization of Cu-induced-release of root exudates and their possible roles in plant Cu-tolerance. Using sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] seedlings as materials, we investigated the impacts of 0, 0.5, 25, 150, 350, 550, 1000, 2000 or 5000 µM CuCl2 (pH 4.8) on Cu uptake, root exudates [malate, citrate, total phenolics (TP), total soluble sugars (TSS) and total free amino acids (TFAA)], electrolyte leakage and malondialdehyde, and solution pH under hydroponic conditions; the time-course of root exudates and solution pH in response to Cu; and the impacts of protein synthesis and anion-channel inhibitors, and temperature on Cu-induced-secretion of root exudates and solution pH. About 70% of Cu was accumulated in 0 and 0.5 µM Cu-exposed roots, while over 97% of Cu was accumulated in ≥25 µM Cu-exposed roots. Without Cu, the seedlings could alkalize the solution pH from 4.8 to above 6.0. Cu-stimulated-secretion of root exudates elevated with the increment of Cu concentration from 0 to 1000 µM, then decreased or remained unchanged with the further increment of Cu concentration, while root electrolyte leakage and malondialdehyde (root-induced alkalization) increased (lessened) with the increment of Cu concentration from 0 to 5000 µM. Further analysis indicated that Cu-stimulated-secretion of root exudates was an energy-dependent process and could repressed by inhibitors, and that there was no discernible delay between the onset of exudate release and the addition of Cu. To conclude, both root-induced alkalization and Cu-stimulated-release of root exudates played a key role in sweet orange Cu-tolerance via increasing root Cu accumulation and reducing Cu uptake and phytotoxicity.


Asunto(s)
Citrus sinensis , Citrus , Aminoácidos/metabolismo , Aniones , Ácido Cítrico/metabolismo , Citrus/metabolismo , Citrus sinensis/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Exudados y Transudados/metabolismo , Malatos/metabolismo , Malondialdehído/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Azúcares/metabolismo
12.
BMC Plant Biol ; 22(1): 370, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35879653

RESUMEN

BACKGROUND: In China, nitrogen (N)-deficiency often occurs in Citrus orchards, which is one of the main causes of yield loss and fruit quality decline. Little information is known about the adaptive responses of Citrus carbon (C) and N metabolisms to N-deficiency. Seedlings of 'Xuegan' (Citrus sinensis (L.) Osbeck) were supplied with nutrient solution at an N concentration of 0 (N-deficiency), 5, 10, 15 or 20 mM for 10 weeks. Thereafter, we examined the effects of N supply on the levels of C and N in roots, stems and leaves, and the levels of organic acids, nonstructural carbohydrates, NH4+-N, NO3--N, total soluble proteins, free amino acids (FAAs) and derivatives (FAADs), and the activities of key enzymes related to N assimilation and organic acid metabolism in roots and leaves. RESULTS: N-deficiency elevated sucrose export from leaves to roots, C and N distributions in roots and C/N ratio in roots, stems and leaves, thus enhancing root dry weight/shoot dry weight ratio and N use efficiency. N-deficient leaves displayed decreased accumulation of starch and total nonstructural carbohydrates (TNC) and increased sucrose/starch ratio as well as a partitioning trend of assimilated C toward to sucrose, but N-deficient roots displayed elevated accumulation of starch and TNC and reduced sucrose/starch ratio as well as a partitioning trend of assimilated C toward to starch. N-deficiency reduced the concentrations of most FAADs and the ratios of total FAADs (TFAADs)/N in leaves and roots. N-deficiency reduced the demand for C skeleton precursors for amino acid biosynthesis, thus lowering TFAADs/C ratio in leaves and roots. N-deficiency increased (decreased) the relative amounts of C-rich (N-rich) FAADs, thus increasing the molar ratio of C/N in TFAADs in leaves and roots. CONCLUSIONS: Our findings corroborated our hypothesis that C and N metabolisms displayed adaptive responses to N-deficiency in C. sinensis seedlings, and that some differences existed between roots and leaves in N-deficiency-induced alterations of and C and N metabolisms.


Asunto(s)
Citrus sinensis , Citrus , Carbohidratos , Carbono/metabolismo , Citrus/metabolismo , Citrus sinensis/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantones/fisiología , Almidón/metabolismo , Sacarosa/metabolismo
13.
Ecotoxicol Environ Saf ; 234: 113423, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307619

RESUMEN

'Xuegan' (Citrus sinensis) seedlings were fertilized 6 times weekly for 24 weeks with 0.5 or 350 µM CuCl2 and 2.5, 10 or 25 µM H3BO3. Cu-toxicity increased Cu uptake per plant (UPP) and Cu concentrations in leaves, stems and roots, decreased water uptake and phosphorus, nitrogen, calcium, magnesium, potassium, sulfur, boron and iron UPP, and increased the ratios of magnesium, potassium, calcium and sulfur UPP to phosphorus UPP and the ratios of leaf magnesium, potassium and calcium concentrations to leaf phosphorus concentration. Many decaying and dead fibrous roots occurred in Cu-toxic seedlings. Cu-toxicity-induced alterations of these parameters and root damage decreased with the increase of boron supply. These results demonstrated that B supplementation lowered Cu uptake and its concentrations in leaves, stems and roots and subsequently alleviated Cu-toxicity-induced damage to root growth and function, thus improving plant nutrient (decreased Cu uptake and efficient maintenance of the other nutrient homeostasis and balance) and water status. Further analysis indicated that the improved nutrition and water status contributed to the boron-mediated amelioration of Cu-toxicity-induced inhibition of seedlings, decline of leaf pigments, large reduction of leaf CO2 assimilation and impairment of leaf photosynthetic electron transport chain revealed by greatly altered chlorophyll a fluorescence (OJIP) transients, reduced maximum quantum yield of primary photochemistry (Fv/Fm), quantum yield for electron transport (ETo/ABS) and total performance index (PIabs,total), and elevated dissipated energy per reaction center (DIo/RC). To conclude, our findings corroborate the hypothesis that B-mediated amelioration of Cu-toxicity involved reduced damage to roots and improved nutrient and water status. Principal component analysis showed that Cu-toxicity-induced changes of above physiological parameters generally decreased with the increase of B supply and that B supply-induced alterations of above physiological parameters was greater in 350 µM Cu-treated than in 0.5 µM Cu-treated seedlings. B and Cu had a significant interactive influence on C. sinensis seedlings.

14.
Front Pharmacol ; 12: 803686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899362

RESUMEN

Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory disorders. IBD is regarded as a severe healthcare problem worldwide, with high morbidity and lethality. So far, despite of numerous studies on this issue, the specific mechanisms of IBD still remain unclarified and ideal treatments are not available for IBD. The intestinal mucosal barrier is vital for maintaining the function of the intestinal self-defensive system. Among all of the components, macrophage is an important one in the intestinal self-defensive system, normally protecting the gut against exotic invasion. However, the over-activation of macrophages in pathological conditions leads to the overwhelming induction of intestinal inflammatory and immune reaction, thus damaging the intestinal functions. Autophagy is an important catabolic mechanism. It has been proven to participate the regulation of various kinds of inflammation- and immune-related disorders via the regulation of inflammation in related cells. Here in this paper, we will review the role and mechanism of intestinal macrophage autophagy in IBD. In addition, several well-studied kinds of agents taking advantage of intestinal macrophage autophagy for the treatment of IBD will also be discussed. We aim to bring novel insights in the development of therapeutic strategies against IBD.

15.
Tree Physiol ; 40(9): 1277-1291, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32348504

RESUMEN

Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.


Asunto(s)
Citrus sinensis , Citrus , Cromatografía Liquida , Magnesio , Hojas de la Planta , Raíces de Plantas , Espectrometría de Masas en Tándem
16.
Plants (Basel) ; 8(10)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31575029

RESUMEN

Citrus sinensis seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg (NO3)2 for 16 weeks. Mg-deficiency-induced interveinal chlorosis, vein enlargement and corkiness, and alterations of gas exchange, pigments, chlorophyll a fluorescence (OJIP) transients and related parameters were observed in middle and lower leaves, especially in the latter, but not in upper leaves. Mg-deficiency might impair the whole photosynthetic electron transport, including structural damage to thylakoids, ungrouping of photosystem II (PSII), inactivation of oxygen-evolving complex (OEC) and reaction centers (RCs), increased reduction of primary quinone electron acceptor (QA) and plastoquinone pool at PSII acceptor side and oxidation of PSI end-electron acceptors, thus lowering energy transfer and absorption efficiency and the transfer of electrons to the dark reactions, hence, the rate of CO2 assimilation in Mg-deficiency middle and lower leaves. Although potassium, Mg, manganese and zinc concentration in blades displayed a significant and positive relationship with the corresponding element concentration in veins, respectively, great differences existed in Mg-deficiency-induced alterations of nutrient concentrations between leaf blades and veins. For example, Mg-deficiency increased boron level in the blades of upper leaves, decreased boron level in the blades of lower leaves, but did not affect boron level in the blades of middle leaves and veins of upper, middle and lower leaves. To conclude, Mg-deficiency-induced interveinal chlorosis, vein enlargement, and corkiness, and alterations to photosynthesis and related parameters increased with increasing leaf age. Mg-deficiency-induced enlargement and corkiness of veins were not caused by Mg-deficiency-induced boron-starvation.

18.
J Chin Med Assoc ; 81(7): 599-604, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29703517

RESUMEN

BACKGROUND: Recent studies suggested that the gray-white matter ratio (GWR) determined from brain computed tomography (CT) scans may be a reliable predictor of poor neurological outcomes. The aim of study was to evaluate the association between the GWR and the outcomes in adult comatose cardiac arrest (CA) survivors in Chinese. METHODS: A total of 58 CA patients who had CT scans within 72 h of resuscitation between January 2011 and December 2015 were included in this single-center retrospective study. Gray and white matter attenuations (Hounsfield units) were measured, and the GWRs were calculated according to previous studies. The study analyzed the prognostic values of the GWRs in predicting poor outcomes (Cerebral Performance Category 3-5). RESULTS: The attenuation values of gray matter were significantly higher in the good outcome group than in the poor one. All GWRs were significantly higher in the good outcome group (p < 0.05). A GWR (basal ganglia) < 1.18 predicted poor outcomes with a sensitivity and specificity of 50.0% and 87.5%, respectively (p = 0.021). GWR (cerebrum) showed the best predictive performance when CT was performed within 24-72 h (p = 0.003). No significant differences were found between GWR and poor outcomes when CT was performed within the first 24 h. CONCLUSION: Low GWRs which were obtained from brain CT scans in comatose CA patients after restoration of spontaneous circulation were associated with poor neurological outcomes. GWR from brain CT can be a useful parameter for prognostic prediction aiding to an optimal clinical decision process in comatose CA survivors.


Asunto(s)
Coma/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Paro Cardíaco/mortalidad , Tomografía Computarizada por Rayos X/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Femenino , Paro Cardíaco/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Sobrevivientes
19.
World J Emerg Med ; 9(2): 99-104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576821

RESUMEN

BACKGROUND: Airway management in intensive care unit (ICU) patients is challenging. The aim of this study was to compare the rate of successful first-pass intubation in the ICU by using the direct laryngoscopy (DL) and that by using the video laryngoscopy (VL). METHODS: A randomized, non-blinded trial comparing first-pass success rate of intubation between VL and DL was performed. Patients were recruited in the period from August 2014 to August 2016. All physicians working at ICU received hands-on training in the use of the video and direct laryngoscope. The primary outcome measure was the first-pass intubation success. RESULTS: A total of 163 ICU patients underwent intubation during the study period (81 patients in VL group and 82 in DL group). The rate of successful first-pass intubation was not significantly different between the VL and the DL group (67.9% vs. 69.5%, P=0.824). Moreover, the overall intubation success and total number of attempts to achieve intubation success did not differ between the two groups. In patients with successful first-pass intubation, the median duration of the intubation procedure did not differ between the two groups. The Cormack-Lehane grades and the percentage of glottic opening score were similar, and no significant differences were found between the two groups. There were no statistical differences between the VL and the DL group in intubation complications (all P>0.05). CONCLUSION: Among ICU patients requiring intubation, there was no significant difference in the rate of successful first-pass intubation between VL and DL.

20.
World J Emerg Med ; 8(1): 5-11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28123613

RESUMEN

BACKGROUND: This meta-analysis aimed to determine whether extracorporeal cardiopulmonary resuscitation (ECPR), compared with conventional cardiopulmonary resuscitation (CCPR), improves outcomes in adult patients with cardiac arrest (CA). DATA RESOURCES: PubMed, EMBASE, Web of Science, and China Biological Medicine Database were searched for relevant articles. The baseline information and outcome data (survival, good neurological outcome at discharge, at 3-6 months, and at 1 year after CA) were collected and extracted by two authors. Pooled risk ratios (RRs) and 95% confidence intervals (CIs) were calculated using Review Manager 5.3. RESULTS: In six studies 2 260 patients were enrolled to study the survival rate to discharge and long-term neurological outcome published since 2000. A significant effect of ECPR was observed on survival rate to discharge compared to CCPR in CA patients (RR 2.37, 95%CI 1.63-3.45, P<0.001), and patients who underwent ECPR had a better long-term neurological outcome than those who received CCPR (RR 2.79, 95%CI 1.96-3.97, P<0.001). In subgroup analysis, there was a significant difference in survival to discharge favoring ECPR over CCPR group in OHCA patients (RR 2.69, 95%CI 1.48-4.91, P=0.001). However, no significant difference was found in IHCA patients (RR 1.84, 95%CI 0.91-3.73, P=0.09). CONCLUSION: ECPR showed a beneficial effect on survival rate to discharge and long-term neurological outcome over CCPR in adult patients with CA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...